How to Configure the OpenAI-Compatible Server
This guide shows you how to configure and customize the OpenAI-compatible server in gomcptest for different use cases.
Prerequisites
- A working installation of gomcptest
- Basic familiarity with the OpenAI server from the tutorial
- Understanding of environment variables and configuration
Environment Variables Configuration
Basic Server Configuration
The OpenAI server can be configured using the following environment variables:
# Server port (default: 8080)
export PORT=8080
# Log level: DEBUG, INFO, WARN, ERROR (default: INFO)
export LOG_LEVEL=INFO
# Directory to store images (required)
export IMAGE_DIR=/path/to/image/directory
GCP Configuration
Configure the Google Cloud Platform integration:
# GCP Project ID (required)
export GCP_PROJECT=your-gcp-project-id
# GCP Region (default: us-central1)
export GCP_REGION=us-central1
# Comma-separated list of Gemini models (default: gemini-1.5-pro,gemini-2.0-flash)
export GEMINI_MODELS=gemini-1.5-pro,gemini-2.0-flash
# Comma-separated list of Imagen models (optional)
export IMAGEN_MODELS=imagen-3.0-generate-002
Setting Up a Production Environment
For a production environment, create a proper systemd service file:
sudo nano /etc/systemd/system/gomcptest-openai.service
Add the following content:
[Unit]
Description=gomcptest OpenAI Server
After=network.target
[Service]
User=yourusername
WorkingDirectory=/path/to/gomcptest/host/openaiserver
ExecStart=/path/to/gomcptest/host/openaiserver/openaiserver -mcpservers "/path/to/gomcptest/bin/GlobTool;/path/to/gomcptest/bin/GrepTool;/path/to/gomcptest/bin/LS;/path/to/gomcptest/bin/View;/path/to/gomcptest/bin/Bash;/path/to/gomcptest/bin/Replace"
Environment=PORT=8080
Environment=LOG_LEVEL=INFO
Environment=IMAGE_DIR=/path/to/image/directory
Environment=GCP_PROJECT=your-gcp-project-id
Environment=GCP_REGION=us-central1
Environment=GEMINI_MODELS=gemini-1.5-pro,gemini-2.0-flash
Restart=on-failure
[Install]
WantedBy=multi-user.target
Then enable and start the service:
sudo systemctl enable gomcptest-openai
sudo systemctl start gomcptest-openai
Configuring MCP Tools
Adding Custom Tools
To add custom MCP tools to the server, include them in the -mcpservers
parameter when starting the server:
go run . -mcpservers "../bin/GlobTool;../bin/GrepTool;../bin/LS;../bin/View;../bin/YourCustomTool;../bin/Bash;../bin/Replace"
Tool Parameters and Arguments
Some tools require additional parameters. You can specify these after the tool path:
go run . -mcpservers "../bin/GlobTool;../bin/dispatch_agent -glob-path ../bin/GlobTool -grep-path ../bin/GrepTool -ls-path ../bin/LS -view-path ../bin/View"
API Usage Configuration
Enabling CORS
For web applications, you may need to enable CORS. Add a middleware to the main.go file:
package main
import (
"net/http"
// other imports
)
// CORS middleware
func corsMiddleware(next http.Handler) http.Handler {
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
w.Header().Set("Access-Control-Allow-Origin", "*")
w.Header().Set("Access-Control-Allow-Methods", "GET, POST, OPTIONS")
w.Header().Set("Access-Control-Allow-Headers", "Content-Type, Authorization")
if r.Method == "OPTIONS" {
w.WriteHeader(http.StatusOK)
return
}
next.ServeHTTP(w, r)
})
}
func main() {
// existing code...
http.Handle("/", corsMiddleware(openAIHandler))
// existing code...
}
Setting Rate Limits
Add a simple rate limiting middleware:
package main
import (
"net/http"
"sync"
"time"
// other imports
)
type RateLimiter struct {
requests map[string][]time.Time
maxRequests int
timeWindow time.Duration
mu sync.Mutex
}
func NewRateLimiter(maxRequests int, timeWindow time.Duration) *RateLimiter {
return &RateLimiter{
requests: make(map[string][]time.Time),
maxRequests: maxRequests,
timeWindow: timeWindow,
}
}
func (rl *RateLimiter) Middleware(next http.Handler) http.Handler {
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
ip := r.RemoteAddr
rl.mu.Lock()
// Clean up old requests
now := time.Now()
if reqs, exists := rl.requests[ip]; exists {
var validReqs []time.Time
for _, req := range reqs {
if now.Sub(req) <= rl.timeWindow {
validReqs = append(validReqs, req)
}
}
rl.requests[ip] = validReqs
}
// Check if rate limit is exceeded
if len(rl.requests[ip]) >= rl.maxRequests {
rl.mu.Unlock()
http.Error(w, "Rate limit exceeded", http.StatusTooManyRequests)
return
}
// Add current request
rl.requests[ip] = append(rl.requests[ip], now)
rl.mu.Unlock()
next.ServeHTTP(w, r)
})
}
func main() {
// existing code...
rateLimiter := NewRateLimiter(10, time.Minute) // 10 requests per minute
http.Handle("/", rateLimiter.Middleware(corsMiddleware(openAIHandler)))
// existing code...
}
Performance Tuning
Adjusting Memory Usage
For high-load scenarios, adjust Go’s garbage collector:
export GOGC=100 # Default is 100, lower values lead to more frequent GC
Increasing Concurrency
If handling many concurrent requests, adjust the server’s concurrency limits:
package main
import (
"net/http"
// other imports
)
func main() {
// existing code...
server := &http.Server{
Addr: ":" + strconv.Itoa(cfg.Port),
Handler: openAIHandler,
ReadTimeout: 30 * time.Second,
WriteTimeout: 120 * time.Second,
IdleTimeout: 120 * time.Second,
MaxHeaderBytes: 1 << 20,
}
err = server.ListenAndServe()
// existing code...
}
Troubleshooting Common Issues
Debugging Connection Problems
If you’re experiencing connection issues, set the log level to DEBUG:
export LOG_LEVEL=DEBUG
Common Error Messages
- Failed to create MCP client: Ensure the tool path is correct and the tool is executable
- Failed to load GCP config: Check your GCP environment variables
- Error in LLM request: Verify your GCP credentials and project access
Checking Tool Registration
To verify tools are registered correctly, look for log messages like:
INFO server0 Registering command=../bin/GlobTool
INFO server1 Registering command=../bin/GrepTool
[i18n] feedback_title
[i18n] feedback_question
Glad to hear it! Please tell us how we can improve.
Sorry to hear that. Please tell us how we can improve.