This is the multi-page printable view of this section. Click here to print.

Return to the regular view of this page.

Architecture

Deep dive into AgentHub’s system architecture and design

Architecture Explanations

Understand the fundamental architecture and design principles behind AgentHub’s distributed agent system.

Available Documentation

1 - A2A-Compliant EDA Broker Architecture

Deep dive into the internal architecture of the AgentHub EDA broker, how it implements Agent2Agent (A2A) protocol-compliant communication patterns while maintaining Event-Driven Architecture benefits.

AgentHub A2A-Compliant EDA Broker Architecture

This document explains the internal architecture of the AgentHub Event-Driven Architecture (EDA) broker, how it implements Agent2Agent (A2A) protocol-compliant communication patterns, and the design decisions behind its hybrid approach.

Architectural Overview

The AgentHub broker serves as a centralized Event-Driven Architecture hub that transports Agent2Agent (A2A) protocol-compliant messages between distributed agents. It combines the scalability benefits of EDA with the interoperability guarantees of the A2A protocol.

┌─────────────────────────────────────────────────────────────────┐
│                     AgentHub Broker                             │
├─────────────────────────────────────────────────────────────────┤
│  ┌─────────────────┐    ┌─────────────────┐    ┌─────────────────┐│
│  │   Task Router   │    │   Subscriber    │    │   Progress      ││
│  │                 │    │   Manager       │    │   Tracker       ││
│  │ • Route tasks   │    │                 │    │                 ││
│  │ • Apply filters │    │ • Manage agent  │    │ • Track task    ││
│  │ • Broadcast     │    │   subscriptions │    │   progress      ││
│  │ • Load balance  │    │ • Handle        │    │ • Update        ││
│  │                 │    │   disconnects   │    │   requesters    ││
│  └─────────────────┘    └─────────────────┘    └─────────────────┘│
├─────────────────────────────────────────────────────────────────┤
│                        gRPC Interface                           │
├─────────────────────────────────────────────────────────────────┤
│  ┌─────────────────┐    ┌─────────────────┐    ┌─────────────────┐│
│  │ PublishTask     │    │SubscribeToTasks│    │SubscribeToTask  ││
│  │ PublishResult   │    │SubscribeToRes  │    │ Progress        ││
│  │ PublishProgress │    │                 │    │                 ││
│  └─────────────────┘    └─────────────────┘    └─────────────────┘│
└─────────────────────────────────────────────────────────────────┘

Core Components

1. Event Bus Server

The main server implementation at broker/main.go:22 provides the central coordination point:

type eventBusServer struct {
    pb.UnimplementedEventBusServer

    // Subscription management
    taskSubscribers         map[string][]chan *pb.TaskMessage
    taskResultSubscribers   map[string][]chan *pb.TaskResult
    taskProgressSubscribers map[string][]chan *pb.TaskProgress
    taskMu                  sync.RWMutex
}

Key characteristics:

  • Thread-safe: Uses sync.RWMutex to protect concurrent access to subscriber maps
  • Channel-based: Uses Go channels for efficient message passing
  • Non-blocking: Implements timeouts to prevent blocking on slow consumers
  • Stateless: No persistent storage - all state is in-memory

2. Task Routing Engine

The routing logic determines how tasks are delivered to agents:

Direct Routing

When a task specifies a ResponderAgentId, it’s routed directly to that agent:

if responderID := req.GetTask().GetResponderAgentId(); responderID != "" {
    if subs, ok := s.taskSubscribers[responderID]; ok {
        targetChannels = subs
    }
}

Broadcast Routing

When no specific responder is set, tasks are broadcast to all subscribed agents:

} else {
    // Broadcast to all task subscribers
    for _, subs := range s.taskSubscribers {
        targetChannels = append(targetChannels, subs...)
    }
}

Routing Features

  • Immediate delivery: Tasks are routed immediately upon receipt
  • Multiple subscribers: Single agent can have multiple subscription channels
  • Timeout protection: 5-second timeout prevents blocking on unresponsive agents
  • Error isolation: Failed delivery to one agent doesn’t affect others

3. Subscription Management

The broker manages three types of subscriptions:

Task Subscriptions

Agents subscribe to receive tasks assigned to them:

func (s *eventBusServer) SubscribeToTasks(req *pb.SubscribeToTasksRequest, stream pb.EventBus_SubscribeToTasksServer) error
  • Agent-specific: Tasks are delivered based on agent ID
  • Type filtering: Optional filtering by task types
  • Long-lived streams: Connections persist until agent disconnects
  • Automatic cleanup: Subscriptions are removed when connections close

Result Subscriptions

Publishers subscribe to receive results of tasks they requested:

func (s *eventBusServer) SubscribeToTaskResults(req *pb.SubscribeToTaskResultsRequest, stream pb.EventBus_SubscribeToTaskResultsServer) error

Progress Subscriptions

Publishers can track progress of long-running tasks:

func (s *eventBusServer) SubscribeToTaskProgress(req *pb.SubscribeToTaskResultsRequest, stream pb.EventBus_SubscribeToTaskProgressServer) error

4. Message Flow Architecture

Task Publication Flow

  1. Validation: Incoming tasks are validated for required fields
  2. Routing: Tasks are routed to appropriate subscribers
  3. Delivery: Messages are sent via Go channels with timeout protection
  4. Response: Publisher receives acknowledgment of successful publication

Result Flow

  1. Receipt: Agents publish task results back to the broker
  2. Broadcasting: Results are broadcast to all result subscribers
  3. Filtering: Subscribers receive results for their requested tasks
  4. Delivery: Results are streamed back to requesting agents

Progress Flow

  1. Updates: Executing agents send periodic progress updates
  2. Distribution: Progress updates are sent to interested subscribers
  3. Real-time delivery: Updates are streamed immediately upon receipt

Design Decisions and Trade-offs

In-Memory State Management

Decision: Store all subscription state in memory using Go maps and channels.

Benefits:

  • High performance: No database overhead for message routing
  • Low latency: Sub-millisecond message routing
  • Simplicity: Easier to develop, test, and maintain
  • Concurrent efficiency: Go’s garbage collector handles channel cleanup

Trade-offs:

  • No persistence: Broker restart loses all subscription state
  • Memory usage: Large numbers of agents increase memory requirements
  • Single point of failure: No built-in redundancy

When this works well:

  • Development and testing environments
  • Small to medium-scale deployments
  • Scenarios where agents can re-establish subscriptions on broker restart

Asynchronous Message Delivery

Decision: Use Go channels with timeout-based delivery.

Implementation:

go func(ch chan *pb.TaskMessage, task pb.TaskMessage) {
    select {
    case ch <- &task:
        // Message sent successfully
    case <-ctx.Done():
        log.Printf("Context cancelled while sending task %s", task.GetTaskId())
    case <-time.After(5 * time.Second):
        log.Printf("Timeout sending task %s. Dropping message.", task.GetTaskId())
    }
}(subChan, taskToSend)

Benefits:

  • Non-blocking: Slow agents don’t block the entire system
  • Fault tolerance: Timeouts prevent resource leaks
  • Scalability: Concurrent delivery to multiple agents
  • Resource protection: Prevents unbounded queue growth

Trade-offs:

  • Message loss: Timed-out messages are dropped
  • Complexity: Requires careful timeout tuning
  • No delivery guarantees: No acknowledgment of successful processing

gRPC Streaming for Subscriptions

Decision: Use bidirectional gRPC streams for agent subscriptions.

Benefits:

  • Real-time delivery: Messages are pushed immediately
  • Connection awareness: Broker knows when agents disconnect
  • Flow control: gRPC handles backpressure automatically
  • Type safety: Protocol Buffer messages ensure data consistency

Trade-offs:

  • Connection overhead: Each agent maintains persistent connections
  • Resource usage: Streams consume memory and file descriptors
  • Network sensitivity: Transient network issues can break connections

Concurrent Access Patterns

Decision: Use read-write mutexes with channel-based message passing.

Implementation:

s.taskMu.RLock()
// Read subscriber information
var targetChannels []chan *pb.TaskMessage
for _, subs := range s.taskSubscribers {
    targetChannels = append(targetChannels, subs...)
}
s.taskMu.RUnlock()

// Send messages without holding locks
for _, subChan := range targetChannels {
    go func(ch chan *pb.TaskMessage, task pb.TaskMessage) {
        // Async delivery
    }(subChan, taskToSend)
}

Benefits:

  • High concurrency: Multiple readers can access subscriptions simultaneously
  • Lock-free delivery: Message sending doesn’t hold locks
  • Deadlock prevention: Clear lock ordering and minimal critical sections
  • Performance: Read operations are optimized for the common case

Scalability Characteristics

Throughput

  • Task routing: ~10,000+ tasks/second on modern hardware
  • Concurrent connections: Limited by file descriptor limits (typically ~1,000s)
  • Memory usage: ~1KB per active subscription

Latency

  • Task routing: <1ms for local network delivery
  • End-to-end: <10ms for simple task processing cycles
  • Progress updates: Real-time streaming with minimal buffering

Resource Usage

  • CPU: Low CPU usage, primarily network I/O bound
  • Memory: Linear growth with number of active subscriptions
  • Network: Efficient binary Protocol Buffer encoding

Error Handling and Resilience

Connection Failures

  • Automatic cleanup: Subscriptions are removed when connections close
  • Graceful degradation: Failed agents don’t affect others
  • Reconnection support: Agents can re-establish subscriptions

Message Delivery Failures

  • Timeout handling: Messages that can’t be delivered are dropped
  • Logging: All failures are logged for debugging
  • Isolation: Per-agent timeouts prevent cascading failures

Resource Protection

  • Channel buffering: Limited buffer sizes prevent memory exhaustion
  • Timeout mechanisms: Prevent resource leaks from stuck operations
  • Graceful shutdown: Proper cleanup during server shutdown

Monitoring and Observability

Built-in Logging

The broker provides comprehensive logging:

  • Task routing decisions
  • Subscription lifecycle events
  • Error conditions and recovery
  • Performance metrics

Integration Points

  • Health checks: HTTP endpoints for monitoring
  • Metrics export: Prometheus/metrics integration points
  • Distributed tracing: Context propagation support

Future Enhancements

Persistence Layer

  • Database backend: Store subscription state for broker restarts
  • Message queuing: Durable task queues for reliability
  • Transaction support: Atomic message delivery guarantees

Clustering Support

  • Horizontal scaling: Multiple broker instances
  • Load balancing: Distribute agents across brokers
  • Consensus protocols: Consistent state across brokers

Advanced Routing

  • Capability-based routing: Route tasks based on agent capabilities
  • Load-aware routing: Consider agent load in routing decisions
  • Geographic routing: Route based on agent location

Security Enhancements

  • Authentication: Agent identity verification
  • Authorization: Task-level access controls
  • Encryption: TLS for all communications

The AgentHub broker architecture provides a solid foundation for Agent2Agent communication while maintaining simplicity and performance. Its design supports the immediate needs of most agent systems while providing clear paths for future enhancement as requirements evolve.

2 - Cortex Architecture

Understanding the Cortex asynchronous AI orchestration engine

Cortex Architecture

Cortex is an asynchronous, event-driven AI orchestration engine that serves as the “brain” of multi-agent systems. It manages conversations, coordinates tasks across specialized agents, and uses LLM-based decision-making to route work intelligently.

Overview

Traditional chatbots block on long-running operations. Cortex enables non-blocking conversations where users can interact while background tasks execute asynchronously.

Key Innovation

Traditional:  User → Request → [BLOCKED] → Response
Cortex:       User → Request → Immediate Ack → [Async Work] → Final Response

Users receive instant acknowledgments and can continue conversing while agents process tasks in the background.

Architecture Diagram

┌─────────────────┐      ┌────────────────┐      ┌─────────────┐
│   Chat CLI      │─────>│   Event Bus    │<─────│   Cortex    │
│  (User I/O)     │      │   (Broker)     │      │ Orchestrator│
└─────────────────┘      └────────────────┘      └─────────────┘
        ▲                        ▲                      │
        │ chat.response          │ task.result          │ task.request
        │                        │                      │
        │                  ┌─────────────┐              │
        └──────────────────│  Agent(s)   │◄─────────────┘
                           │ (Workers)   │
                           └─────────────┘

Core Components

1. Cortex Orchestrator

The central decision-making engine that:

  • Maintains conversation state - Full history per session
  • Registers agents dynamically - Discovers capabilities via Agent Cards
  • Decides actions via LLM - Uses AI to route work intelligently
  • Coordinates tasks - Tracks pending work and correlates results

File: agents/cortex/cortex.go

2. State Manager

Manages conversational state with thread-safe operations:

type ConversationState struct {
    SessionID        string
    Messages         []*pb.Message
    PendingTasks     map[string]*TaskContext
    RegisteredAgents map[string]*pb.AgentCard
}

Key Features:

  • Per-session locking (no global bottleneck)
  • Interface-based (swappable implementations)
  • Currently in-memory (POC), production uses Redis/PostgreSQL

Files: agents/cortex/state/

3. LLM Client

Abstraction for AI-powered decision-making:

type Client interface {
    Decide(
        ctx context.Context,
        conversationHistory []*pb.Message,
        availableAgents []*pb.AgentCard,
        newEvent *pb.Message,
    ) (*Decision, error)
}

The LLM analyzes:

  • Conversation history
  • Available agent capabilities
  • New incoming messages

And returns decisions:

  • chat.response - Reply to user
  • task.request - Dispatch work to agent

Files: agents/cortex/llm/

IntelligentDecider: Context-Aware Orchestration

The IntelligentDecider is a mock LLM implementation that demonstrates intelligent, intent-based task orchestration. Unlike simple dispatchers that route every message to agents, it analyzes user intent before deciding whether to orchestrate with specialized agents or respond directly.

Key Characteristics:

  1. Intent Detection: Analyzes message content for keywords indicating specific needs

    • Echo requests: “echo”, “repeat”, “say back”
    • Future: “translate”, “summarize”, “transcribe”, etc.
  2. Conditional Orchestration: Only dispatches to agents when user explicitly requests functionality

    • User: “echo hello” → Dispatches to echo_agent
    • User: “hello” → Responds directly (no agent needed)
  3. Transparent Reasoning: Always explains decision-making process

    • All decisions include detailed reasoning visible in observability traces
    • Users understand why Cortex chose specific actions

Example Flow:

// User message: "echo hello world"
decision := IntelligentDecider()(ctx, history, agents, userMsg)

// Returns:
Decision{
    Reasoning: "User message 'echo hello world' contains an explicit echo request (detected keywords: echo/repeat/say back). I'm dispatching this to the echo_agent which specializes in repeating messages back.",
    Actions: [
        {
            Type: "chat.response",
            ResponseText: "I detected you want me to echo something. I'm asking the echo agent to handle this for you.",
        },
        {
            Type: "task.request",
            TaskType: "echo",
            TargetAgent: "agent_echo",
            TaskPayload: {"input": "echo hello world"},
        },
    ],
}

Comparison to Simple Dispatchers:

ApproachEvery MessageIntent DetectionExplains ReasoningResponds Directly
TaskDispatcherDecider (deprecated)Dispatches to agentNoMinimalNo
IntelligentDeciderAnalyzes firstYesDetailedYes

Design Benefits:

  • Reduced Latency: Simple queries get immediate responses without agent roundtrip
  • Resource Efficiency: Agents only invoked when their specialized capabilities are needed
  • Better UX: Users understand what Cortex is doing and why
  • Debuggability: Reasoning in traces makes orchestration logic transparent
  • Extensibility: Easy to add new intent patterns for new agent types

Future Evolution:

In production, the IntelligentDecider pattern should be replaced with a real LLM that performs function calling:

// Production LLM receives tools/functions
tools := convertAgentCardsToTools(availableAgents)
decision := realLLM.Decide(history, tools, newMsg)

// LLM naturally decides:
// - "hello" → No function call, direct response
// - "echo hello" → Calls echo_agent function
// - "translate this to French" → Calls translation_agent function

The IntelligentDecider serves as a working example of the decision patterns a real LLM would follow.

4. Message Publisher

Interface for publishing messages to the Event Bus:

type MessagePublisher interface {
    PublishMessage(
        ctx context.Context,
        msg *pb.Message,
        routing *pb.AgentEventMetadata,
    ) error
}

Adapts AgentHub client to Cortex’s needs.

Message Flow

Simple Chat Request

1. User types "Hello" in CLI
   ↓
2. CLI publishes A2A Message (role=USER, context_id=session-1)
   ↓
3. Event Bus routes to Cortex
   ↓
4. Cortex retrieves conversation state
   ↓
5. Cortex calls LLM.Decide(history, agents, newMsg)
   ↓
6. LLM returns Decision: [chat.response: "Hello! How can I help?"]
   ↓
7. Cortex publishes A2A Message (role=AGENT, response text)
   ↓
8. Event Bus routes to CLI
   ↓
9. CLI displays response
   ↓
10. Cortex updates state with both messages

Asynchronous Task Execution

1. User: "Transcribe this audio file"
   ↓
2. Cortex LLM decides: [chat.response + task.request]
   ↓
3. Cortex publishes:
   - Message to user: "I'll start transcription, this may take a few minutes"
   - Task request to transcription agent
   ↓
4. User sees immediate acknowledgment ✅
   User can continue chatting!
   ↓
5. Transcription agent processes (background, may take minutes)
   ↓
6. Agent publishes task.result with transcribed text
   ↓
7. Cortex receives result, calls LLM.Decide()
   ↓
8. LLM decides: [chat.response: "Transcription complete: <text>"]
   ↓
9. Cortex publishes final response to user
   ↓
10. User sees final result

Design Patterns

1. Interface Segregation

All major components are interfaces:

  • StateManager - Easy to swap (in-memory → Redis)
  • LLM Client - Easy to test (mock → real AI)
  • MessagePublisher - Decoupled from transport

Benefits:

  • Testability (use mocks)
  • Flexibility (swap implementations)
  • Clear contracts

2. Session-Level Concurrency

Each session has its own lock:

// NOT this (global bottleneck):
globalMutex.Lock()
updateState()
globalMutex.Unlock()

// But this (per-session):
sessionLock := getSessionLock(sessionID)
sessionLock.Lock()
updateState()
sessionLock.Unlock()

Benefits:

  • Multiple sessions can update concurrently
  • No contention across sessions
  • Scales horizontally

3. LLM as Control Plane

Instead of hard-coded if/else routing:

// Old way:
if strings.Contains(input, "transcribe") {
    dispatchToTranscriber()
} else if strings.Contains(input, "translate") {
    dispatchToTranslator()
}

// Cortex way:
decision := llm.Decide(history, agents, input)
executeActions(decision.Actions)

Benefits:

  • Flexible - LLM adapts to context
  • Extensible - Add agents, LLM discovers them
  • Natural - Mimics human reasoning

Implementation: The IntelligentDecider (see LLM Client section above) demonstrates this pattern by analyzing user intent and making intelligent routing decisions with transparent reasoning.

4. Message Self-Containment

Every message is fully self-describing:

message Message {
    string message_id = 1;   // Unique ID
    string context_id = 2;   // Session/conversation ID
    string task_id = 3;      // Task correlation (if applicable)
    Role role = 4;           // USER or AGENT
    repeated Part content = 5;
    Struct metadata = 6;
}

Benefits:

  • Agents are stateless (all context in message)
  • Easy correlation (context_id, task_id)
  • Traceable (message_id)

State Management

ConversationState Structure

type ConversationState struct {
    SessionID        string
    Messages         []*pb.Message      // Full history
    PendingTasks     map[string]*TaskContext
    RegisteredAgents map[string]*pb.AgentCard
}

TaskContext Tracking

type TaskContext struct {
    TaskID        string
    TaskType      string
    RequestedAt   int64
    OriginalInput *pb.Message
    UserNotified  bool  // Did we acknowledge?
}

Cortex tracks:

  • Which tasks are in-flight
  • What the user originally requested
  • Whether we’ve acknowledged the request

State Lifecycle

1. Get session state (or create new)
2. Lock session for updates
3. Add new message to history
4. Call LLM to decide actions
5. Execute actions (publish messages)
6. Update pending tasks
7. Save state
8. Release lock

Agent Discovery

Agent Card Registration

Agents publish capabilities on startup:

type AgentCard struct {
    Name        string
    Description string
    Skills      []*AgentSkill
}

Cortex maintains a registry:

registeredAgents map[string]*pb.AgentCard

Dynamic Tool List

When making LLM decisions, Cortex provides available agents:

decision := llm.Decide(
    ctx,
    conversationHistory,
    cortex.GetAvailableAgents(),  // ← Dynamic list
    newEvent,
)

The LLM sees which tools are available and chooses appropriately.

Scaling & Performance

Concurrency Model

  • Lock Granularity: Per-session (not global)
  • State Access: O(1) lookups via map
  • Message Processing: Asynchronous (non-blocking)

Horizontal Scaling

Future: Partition sessions across multiple Cortex instances:

Cortex-1: handles sessions A-M
Cortex-2: handles sessions N-Z

Event Bus routes messages to correct instance based on context_id.

Performance Characteristics

  • State Get: O(1) with read lock
  • State Set: O(1) with write lock
  • Concurrent Sessions: No contention (per-session locks)

Tested: 100 goroutines updating same session → zero lost updates ✅

Error Handling

Agent Failures

When an agent fails:

  1. Agent publishes task.result with status=“failed”
  2. Cortex receives result
  3. LLM decides how to handle (inform user, retry, try alternative)
  4. Cortex publishes response

LLM Failures

If LLM client errors:

decision, err := llm.Decide(...)
if err != nil {
    // Fallback: publish generic error response
    publishErrorResponse(ctx, session, err)
    return err
}

State Corruption

Protected by:

  • Transaction-like WithLock pattern
  • Copy-on-read to prevent external mutations
  • Validation on state load/save

Implementation Status

✅ Implemented (POC)

  • Core orchestrator logic
  • In-memory state management
  • Mock LLM client with IntelligentDecider (intent-based routing)
  • Agent registration
  • Message routing
  • Task correlation
  • CLI interface
  • Echo agent (demo)
  • Distributed tracing with OpenTelemetry

🚧 Future Work

  • Persistent state (Redis, PostgreSQL)
  • Real LLM integration (Vertex AI, OpenAI)
  • Agent health monitoring
  • Web UI with WebSockets
  • Retry logic & timeouts
  • Advanced error recovery

Code Organization

agents/cortex/
├── cortex.go              # Core orchestrator with full observability
├── cortex_test.go         # Core tests (4 tests)
├── state/
│   ├── interface.go       # StateManager interface
│   ├── memory.go          # In-memory implementation
│   └── memory_test.go     # State tests (5 tests)
├── llm/
│   ├── interface.go       # LLM Client interface
│   ├── mock.go            # Mock implementations
│   │                      # - IntelligentDecider (intent-based)
│   │                      # - TaskDispatcherDecider (deprecated)
│   │                      # - SimpleEchoDecider
│   └── mock_test.go       # LLM tests (4 tests)
└── cmd/
    └── main.go            # Service entry point

Total: ~1,200 lines of production code + 500 lines of tests

Testing Strategy

Unit Tests

  • State Manager: CRUD, concurrency, locking (5 tests)
  • LLM Client: Mock behavior, decision functions (4 tests)
  • Cortex Core: Registration, chat, tasks (4 tests)

All tests use interfaces and mocks (no external dependencies).

Concurrency Testing

func TestInMemoryStateManager_Concurrency(t *testing.T) {
    // Launch 100 goroutines updating same session
    for i := 0; i < 100; i++ {
        go func() {
            sm.WithLock(sessionID, func(state *ConversationState) error {
                state.Messages = append(state.Messages, msg)
                return nil
            })
        }()
    }

    // Assert: Exactly 100 messages (no lost updates)
}

Integration Testing

Demo script (demo_cortex.sh) tests:

  • Broker startup
  • Cortex initialization
  • Agent registration
  • End-to-end message flow

Configuration

Environment Variables

# LLM Model (future)
CORTEX_LLM_MODEL=vertex-ai://gemini-2.0-flash

# AgentHub connection
AGENTHUB_GRPC_PORT=127.0.0.1:50051
AGENTHUB_BROKER_ADDR=127.0.0.1

# Health check
CORTEX_HEALTH_PORT=8086

Programmatic Configuration

cortex := cortex.NewCortex(
    state.NewInMemoryStateManager(),  // or Redis/Postgres
    llm.NewVertexAIClient(model),     // or Mock for testing
    messagePublisher,
)

Observability

Logging

Structured logging with context:

client.Logger.InfoContext(ctx, "Cortex received message",
    "message_id", message.GetMessageId(),
    "context_id", message.GetContextId(),
    "role", message.GetRole().String(),
)

Tracing

OpenTelemetry spans already in AgentHub client:

  • Trace ID propagation
  • Span relationships (parent → child)
  • Error recording

Metrics (Future)

  • Messages processed per session
  • LLM decision latency
  • Task completion rates
  • Error rates by type

Security Considerations

Current (POC)

  • No authentication (all agents trusted)
  • No authorization (all agents can do anything)
  • No message validation (trusts well-formed protobufs)

Future

  • Agent authentication via mTLS
  • Message signing & verification
  • Rate limiting per agent
  • Input sanitization for LLM prompts

Best Practices

For Cortex Operators

  1. Monitor state size - Large conversation histories impact memory
  2. Configure LLM timeouts - Prevent hanging on slow AI responses
  3. Use persistent state - In-memory is POC only
  4. Enable tracing - Essential for debugging async flows

For Agent Developers

  1. Publish clear Agent Cards - Cortex needs good descriptions
  2. Handle errors gracefully - Publish failed task results, don’t crash
  3. Use correlation IDs - Essential for Cortex to track work
  4. Be stateless - All context should be in messages

Comparison to Alternatives

ApproachBlockingState ManagementExtensibility
Traditional ChatbotYes ✗SimpleHard-coded
Function CallingYes ✗Per-requestConfig files
CortexNo ✓PersistentDynamic

Cortex enables truly asynchronous, extensible AI systems.

Resources

Next Steps

  1. Read the Cortex Tutorial to build your first orchestrator
  2. See How to Create Agents for agent development
  3. Check Cortex API Reference for detailed interface documentation

3 - Hexagonal Architecture & A2A Protocol Implementation

Understanding AgentHub’s hexagonal architecture with A2A protocol, gRPC communication, and event-driven design

Hexagonal Architecture & A2A Protocol Implementation

This document explains how AgentHub implements hexagonal architecture principles with the Agent2Agent (A2A) protocol, gRPC communication, and event-driven design patterns.

Overview

AgentHub follows hexagonal architecture (also known as Ports and Adapters) to achieve:

  • Domain isolation: Core A2A protocol logic separated from infrastructure
  • Testability: Clean interfaces enable comprehensive testing
  • Flexibility: Multiple adapters for different communication protocols
  • Maintainability: Clear separation of concerns and dependencies

System Architecture

graph TB
    subgraph "AgentHub Ecosystem"
        subgraph "External Agents"
            A["Agent A<br/>(Chat REPL)"]
            B["Agent B<br/>(Chat Responder)"]
            C["Agent C<br/>(Custom Agent)"]
        end

        subgraph "AgentHub Broker"
            subgraph "Adapters (Infrastructure)"
                GRPC["gRPC Server<br/>Adapter"]
                HEALTH["Health Check<br/>Adapter"]
                METRICS["Metrics<br/>Adapter"]
                TRACING["Tracing Adapter<br/>(OTLP/Jaeger)"]
            end

            subgraph "Ports (Interfaces)"
                SP["AgentHub<br/>Service Port"]
                PP["Message<br/>Publisher Port"]
                EP["Event<br/>Subscriber Port"]
                OP["Observability<br/>Port"]
            end

            subgraph "Domain (Core Logic)"
                A2A["A2A Protocol<br/>Engine"]
                ROUTER["Event Router<br/>& Broker"]
                VALIDATOR["Message<br/>Validator"]
                CONTEXT["Context<br/>Manager"]
                TASK["Task<br/>Lifecycle"]
            end
        end

        subgraph "External Systems"
            OTLP["OTLP Collector<br/>& Jaeger"]
            STORE["Event Store<br/>(Memory)"]
        end
    end

    %% External agent connections
    A -->|"gRPC calls<br/>(PublishMessage,<br/>SubscribeToMessages)"| GRPC
    B -->|"gRPC calls"| GRPC
    C -->|"gRPC calls"| GRPC

    %% Adapter to Port connections
    GRPC -->|"implements"| SP
    HEALTH -->|"implements"| OP
    METRICS -->|"implements"| OP
    TRACING -->|"implements"| OP

    %% Port to Domain connections
    SP -->|"delegates to"| A2A
    PP -->|"delegates to"| ROUTER
    EP -->|"delegates to"| ROUTER
    OP -->|"observes"| A2A

    %% Domain internal connections
    A2A -->|"uses"| VALIDATOR
    A2A -->|"uses"| CONTEXT
    A2A -->|"uses"| TASK
    ROUTER -->|"persists events"| STORE
    TRACING -->|"exports traces"| OTLP

    %% Styling
    classDef agents fill:#add8e6
    classDef adapters fill:#ffa500
    classDef ports fill:#e0ffff
    classDef domain fill:#ffb6c1
    classDef external fill:#dda0dd

    class A,B,C agents
    class GRPC,HEALTH,METRICS,TRACING adapters
    class SP,PP,EP,OP ports
    class A2A,ROUTER,VALIDATOR,CONTEXT,TASK domain
    class OTLP,STORE external

Architecture Notes:

  • Domain Core: Pure A2A protocol logic with message validation, event routing, context correlation, and task state management
  • Ports: Clean, technology-agnostic interfaces providing testable contracts and dependency inversion
  • Adapters: Infrastructure concerns including gRPC communication, observability exports, and protocol adaptations

A2A Message Flow

sequenceDiagram
    participant REPL as Chat REPL<br/>Agent
    participant gRPC as gRPC<br/>Adapter
    participant A2A as A2A Protocol<br/>Engine
    participant Router as Event<br/>Router
    participant Responder as Chat Responder<br/>Agent

    rect rgb(240, 248, 255)
        Note over REPL, Router: A2A Message Publishing
        REPL->>+gRPC: PublishMessage(A2AMessage)
        gRPC->>+A2A: validateA2AMessage()
        A2A->>A2A: check MessageId, Role, Content
        A2A-->>-gRPC: validation result
        gRPC->>+Router: routeA2AEvent(messageEvent)
        Router->>Router: identify subscribers<br/>by agent_id/broadcast
        Router->>Router: create tracing span<br/>with A2A attributes
        Router-->>Responder: deliver message event
        Router-->>-gRPC: routing success
        gRPC-->>-REPL: PublishResponse(event_id)
    end

    rect rgb(255, 248, 240)
        Note over Responder, Router: A2A Message Processing
        Responder->>+gRPC: SubscribeToMessages(agent_id)
        gRPC->>Router: register subscriber
        Router-->>gRPC: subscription stream
        gRPC-->>-Responder: message stream
        Note over Responder: Process A2A message<br/>with tracing spans
        Responder->>+gRPC: PublishMessage(A2AResponse)
        gRPC->>A2A: validateA2AMessage()
        A2A->>A2A: check AGENT role,<br/>ContextId correlation
        gRPC->>Router: routeA2AEvent(responseEvent)
        Router-->>REPL: deliver response event
        gRPC-->>-Responder: PublishResponse
    end

    Note over REPL, Responder: A2A Protocol ensures:<br/>• Message structure compliance<br/>• Role semantics (USER/AGENT)<br/>• Context correlation<br/>• Event-driven routing

Core Components

1. A2A Protocol Engine (Domain Core)

The heart of the system implementing A2A protocol specifications:

// Core domain logic - technology agnostic
type A2AProtocolEngine struct {
    messageValidator MessageValidator
    contextManager   ContextManager
    taskLifecycle    TaskLifecycle
}

// A2A message validation
func (e *A2AProtocolEngine) ValidateMessage(msg *Message) error {
    // A2A compliance checks
    if msg.MessageId == "" { return ErrMissingMessageId }
    if msg.Role == ROLE_UNSPECIFIED { return ErrInvalidRole }
    if len(msg.Content) == 0 { return ErrEmptyContent }
    return nil
}

2. Event Router (Domain Core)

Manages event-driven communication between agents:

type EventRouter struct {
    messageSubscribers map[string][]chan *AgentEvent
    taskSubscribers    map[string][]chan *AgentEvent
    eventSubscribers   map[string][]chan *AgentEvent
}

func (r *EventRouter) RouteEvent(event *AgentEvent) error {
    // Route based on A2A metadata
    routing := event.GetRouting()
    subscribers := r.getSubscribers(routing.ToAgentId, event.PayloadType)

    // Deliver with tracing
    for _, sub := range subscribers {
        go r.deliverWithTracing(sub, event)
    }
}

3. gRPC Adapter (Infrastructure)

Translates between gRPC and domain logic:

type GrpcAdapter struct {
    a2aEngine    A2AProtocolEngine
    eventRouter  EventRouter
    tracer       TracingAdapter
}

func (a *GrpcAdapter) PublishMessage(ctx context.Context, req *PublishMessageRequest) (*PublishResponse, error) {
    // Start tracing span
    ctx, span := a.tracer.StartA2AMessageSpan(ctx, "publish_message", req.Message.MessageId, req.Message.Role)
    defer span.End()

    // Validate using domain logic
    if err := a.a2aEngine.ValidateMessage(req.Message); err != nil {
        a.tracer.RecordError(span, err)
        return nil, err
    }

    // Route using domain logic
    event := a.createA2AEvent(req)
    if err := a.eventRouter.RouteEvent(event); err != nil {
        return nil, err
    }

    return &PublishResponse{Success: true, EventId: event.EventId}, nil
}

Hexagonal Architecture Benefits

1. Domain Isolation

  • A2A protocol logic is pure, testable business logic
  • No infrastructure dependencies in the core domain
  • Technology-agnostic implementation

2. Adapter Pattern

  • gRPC Adapter: Handles Protocol Buffer serialization/deserialization
  • Tracing Adapter: OTLP/Jaeger integration without domain coupling
  • Health Adapter: Service health monitoring
  • Metrics Adapter: Prometheus metrics collection

3. Port Interfaces

// Clean, testable interfaces
type MessagePublisher interface {
    PublishMessage(ctx context.Context, msg *Message) (*PublishResponse, error)
}

type EventSubscriber interface {
    SubscribeToMessages(ctx context.Context, agentId string) (MessageStream, error)
}

type ObservabilityPort interface {
    StartSpan(ctx context.Context, operation string) (context.Context, Span)
    RecordMetric(name string, value float64, labels map[string]string)
}

4. Dependency Inversion

  • Domain depends on abstractions (ports), not concrete implementations
  • Adapters depend on domain through well-defined interfaces
  • Easy testing with mock implementations

A2A Protocol Integration

Message Structure Compliance

classDiagram
    class A2AMessage {
        +string MessageId
        +string ContextId
        +Role Role
        +Part Content
        +Metadata Metadata
        +string TaskId
    }

    class Part {
        +string Text
        +bytes Data
        +FileData File
    }

    class EventMetadata {
        +string FromAgentId
        +string ToAgentId
        +string EventType
        +Priority Priority
    }

    class Role {
        <<enumeration>>
        USER
        AGENT
    }

    class Metadata {
        +Fields map
    }

    A2AMessage "1" --> "0..*" Part : contains
    A2AMessage "1" --> "1" EventMetadata : routed_with
    A2AMessage "1" --> "1" Role : has
    A2AMessage "1" --> "0..1" Metadata : includes

Event-Driven Architecture

The system implements pure event-driven architecture:

  1. Publishers emit A2A-compliant events
  2. Broker routes events based on metadata
  3. Subscribers receive relevant events
  4. Correlation through ContextId maintains conversation flow

Observability Integration

Distributed Tracing

sequenceDiagram
    participant A as Agent A
    participant B as Broker
    participant AB as Agent B
    participant OTLP as OTLP Collector
    participant J as Jaeger

    A->>+B: PublishMessage<br/>[trace_id: 123]
    B->>B: Create A2A spans<br/>with structured attributes
    B->>+AB: RouteEvent<br/>[trace_id: 123]
    AB->>AB: Process with<br/>child spans
    AB->>-B: PublishResponse<br/>[trace_id: 123]
    B->>-A: Success<br/>[trace_id: 123]

    par Observability Export
        B->>OTLP: Export spans<br/>with A2A attributes
        OTLP->>J: Store traces
        J->>J: Build trace timeline<br/>with correlation
    end

    Note over A, J: End-to-end tracing<br/>with A2A protocol visibility

Structured Attributes

Each span includes A2A-specific attributes:

  • a2a.message.id
  • a2a.message.role
  • a2a.context.id
  • a2a.event.type
  • a2a.routing.from_agent
  • a2a.routing.to_agent

Testing Strategy

Unit Testing (Domain Core)

func TestA2AEngine_ValidateMessage(t *testing.T) {
    engine := NewA2AProtocolEngine()

    // Test A2A compliance
    msg := &Message{
        MessageId: "test_msg_123",
        Role: ROLE_USER,
        Content: []*Part{{Text: "hello"}},
    }

    err := engine.ValidateMessage(msg)
    assert.NoError(t, err)
}

Integration Testing (Adapters)

func TestGrpcAdapter_PublishMessage(t *testing.T) {
    // Mock domain dependencies
    mockEngine := &MockA2AEngine{}
    mockRouter := &MockEventRouter{}

    adapter := NewGrpcAdapter(mockEngine, mockRouter)

    // Test adapter behavior
    resp, err := adapter.PublishMessage(ctx, validRequest)
    assert.NoError(t, err)
    assert.True(t, resp.Success)
}

Conclusion

AgentHub’s hexagonal architecture with A2A protocol provides:

  1. Clean Architecture: Separation of concerns with domain-driven design
  2. A2A Compliance: Full protocol implementation with validation
  3. Event-Driven Design: Scalable, loosely-coupled communication
  4. Rich Observability: Comprehensive tracing and metrics
  5. Testability: Clean interfaces enable thorough testing
  6. Flexibility: Easy to extend with new adapters and protocols

This architecture ensures maintainable, scalable, and observable agent communication while maintaining strict A2A protocol compliance.